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XXI. Researches in the Theory of Machines. By the Rev. Henry MoseLey, M. 4.,
F.R.S., Prof. Natural Philosophy and Astronomy, King’s College, London.

Received June 10,—Read June 18, 1841.

THE work of a mechanical agent may be defined as the union of a continual
pressure with a continual motion. The work of overcoming a pressure of one pound
through a space of one foot, is ir. this country taken as the unit in terms of which
any other amount of work is estimated*. The work of any pressure operating
through any space is evidently measured in terms of such units, by multiplying the
number of pounds in the pressure by the number of feet in the space, if the direction
of the pressure be continually that in which the space is described. If not, it follows,
by a simple geometrical deduction, that it is measured by the product of the number
of pounds in the pressure, by the number of feet in the projection of the space de-
scribed+{, upon the direction of the pressure; that is, by the product of the pressure
by its virtual velocity. Thus then we conclud¢, at once, by the principle of virtual
velocities, that if a machine work under a constant equilibrium of the pressures
applied to it, or if it work uniformly, then is the aggregate work of those pressures
which tend to accelerate its motion, equal to the aggregate work of those which tend
to retard it; and, by the principle of vis viva, that if the machine do not work under
an equilibrium of the forces impressed upon it, then is the aggregate work of those
which tend to accelerate the motion of the machine, greater or less than the aggre-
gate work of those which tend to retard its motion by one-half the aggregate of the
vires vivee acquired or lost by the moving parts of the system, whilst the work is
being done upon it. In no respect have the labours of the illustrious President of
the Academy of Sciences more contributed to the development of the theory of

* The sense in which the term work is here used, will be recognised to be that in which ‘ dynamical effect,”
« efficiency,” * work done,” *labouring force,” &c. have been understood by different English writers, and
« moment d’activité,” * quantité d’action,” ‘‘ puissance mécanique,” *travail,” by the French. Among the
latter this variety of terms has at length given place to the most intelligible and the simplest of them, * travail.”
The English word work is the obvious translation of * #ravail,” and the use of it appears to be recommended
by the same considerations. M. Durry has proposed the application of the term ‘dyname” to a unit of
work. The author of this paper has gladly sheltered himself from the charge of adding to the vocabulary of
scientific words by assuming the term itself, ““unit of work,” to represent concisely and conveniently enough,
without translation, the idea which is attached to it. ’

+ If the direction of the pressure remain always parallel to itself, the ‘space described may be any finite
space ; if it do not, the space is understood to be so small, that the direction of the pressure may be supposed
to remain parallel to itself whilst that space is described.
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machines, than in the application which he has so successfully made to it of this
principle of vis viva*. In the elementary discussion, however, of this principle, which
is given by M. PoncELET in the Introduction to his Mécanique Industrielle, he has
revived the term vis inertiee (vis inertize, vis insita (NEwTon)), and associating with
it the definitive idea of a force of resistance opposed to the acceleration or the retard-
ation of a body’s motion, he has shown (Arts. 66. and 122.) the work expended
in overcoming this resistance through any space, to be measured by one-half the vis viva
accumulated through the space; so that throwing into the consideration of the forces
under which a machine works, the vires inertiee of its moving elements, and obser-
ving that one-half of their aggregate vis viva is equal to the aggregate work of their
vires inertize, it follows by the principle of virtual velocities, that the difference
between the aggregate work of those forces impressed upon a machine which tend to
accelerate its motion, and the aggregate work of those which tend to retard the
motion, is equal to the aggregate work of the vires inertie of the moving parts of
the machine : under which form the principle of vis viva resolves itself into the prin-
ciple of virtual velocities. So many difficulties, however, oppose themselves to the
introduction of the term vis inertice, associated with the definitive idea of an oppo-
sing force, into the discussion of questions of mechanics, and especially of practical
and elementary mechanics, that it has appeared to the author of this paper desirable
to avoid it. It is with this view, that in the researches which form the subject of the
paper now submitted to the Society, a new interpretation is given to that function of
the velocity of a moving body which is known as its vis viva ; one-half that function
being interpreted to represent the number of units of work accumulated in the body
so long as its motion is continued, and which number of units of work it is capable
of reproducing upon any resistance which may be opposed to its motion, and bring
it to rest. A very simple investigation will establish the truth of this interpretation
of the analytical formula represented by the term vis viva. Let a body whose weight
is W be conceived to descend freely by gravity through a height I, and to acquire
a velocity V. It will have become capable, by reason of its motion, of overcoming a
certain pressure through a certain space, that is, of yielding a certain amount of
work, which amount of work may be conceived to be accumulated in it. The amount
of the work which it has become capable of yielding, is manifestly that which would
raise another body of the same weight W, to the same vertical height H+; or it is
equivalent to a number of units of work represented by W I, or (since V2 = 2 g H)

by ]5 F-;V— . V2, that is, by one-half the vis viva. Thus the work accumulated in a body

moving with the velocity V, is represented by half the vis viva, when that velocity is
acquired by the action of gravity. Now the work accumulated in a body moving
* See PoxceLer, Mécanique Industrielle, troisidme partie.
t If a mechanical contrivance could be so interposed as to receive the whole of the work of the descending

weight, and communicate it to an equal ascending weight, this last would manifestly be projected upwards
with the same velocity with which the first reached the ground, and would therefore ascend to the same height.
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with this velocity V, is manifestly the same under whatever circumstances that velo-
city may have been acquired; the effects which a body having a given weight, and
moving with a given velocity, is capable of producing (the work which it is capable
of yielding) being manifestly independent of the causes from the operation of which
that velocity has resulted. Since then the work which a body is capable of yielding,
when its velocity has been acquired by the free action of gravity, is represented by
that function of its velocity which we call one-half its vis viva, it is represented by
the same function when that velocity has been acquired by the action of any other
force, or under any other circumstances whatever ; and if the work which it is capa-
ble of yielding upon any resistance opposed to its motion be said to be accumulated
in it before it encounters that resistance, then under all circumstances is the accumu-
lated work of a moving body represented by one-half its vis viva. Giving to the
term vis viva this new interpretation, the principle of vis viva, as applied to machines,
may be enunciated thus :—* The difference between the aggregate work done upon
the machine during any time by those forces which tend to accelerate the motion,
and the aggregate work during the same time of those which tend to retard the
motion, is equal to the aggregate number of units of work accumulated in the mo-
ving parts of the machine during that time if the former aggregate exceed the latter,
and lost from them during that time if the former aggregate fall short of the latter.”
Thus, then, if the aggregate work of the forces which tend to accelerate the motion
of a machine exceeds that of the forces which tend to retard it, then is the surplus
work (that done upon the driving points, above that expended upon the working
points) continually accumulated in the moving elements of the machine, and their
motion is thereby continually accelerated. And if the former aggregate be less than
the latter, then is the deficiency supplied from the work already accumulated in the
moving elements, or it is lost by them, so that their motion is in this case continu-
ally retarded.

2. The moving power divides itself whilst it operates in a machine, first, into that
which overcomes the prejudicial resistances of the machine, or those which are op-
posed by friction and other causes, uselessly absorbing the work in its transmission.
Secondly, into that which accelerates the motion of the various moving parts of the
machine, and which accumulates in them so long as the work done by the moving
power upon it exceeds that expended upon the various resistances opposed to the
motion of the machine. Thirdly, into that which overcomes the useful resistances,
or those which are opposed to the motion of the machine at the working point, or
points, by the useful work which is done by it. Now the aggregate number of units
of useful work yielded by any machine at its working points, is less than the number
received upon the machine directly from the moving power, by the number of units
expended upon the prejudicial resistances, and by the number of units accumulated
in the moving parts of the machine whilst the work is being done. For if = U, re-
present the number of units of work received upon the machine immediately from
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the operation of the moving power, 3 u the whole number of such units absorbed
in overcoming the prejudicial resistances opposed to the working of the machine,
2 U, the whole useful work of the machine (or that done in producing its useful

1 .
effect), and 57 2w (v? — v,?) one half the aggregate difference of the vires vivee of

the various moving parts of the machine at the commencement and termination of
the period during which the work is estimated, then, by the principle of vis viva,

2U1=2U2+2u+;}§2w(022—012),. e

in which v, and v, represent the velocities, at the commencement and termination of
the period, during which the work is estimated, of that moving element of the
machine whose weight is w. But one-half the aggregate difference of the vires vivee
of the moving elements, represents the work accumulated in them during the period
in respect to which the work is estimated.

3. At every period of the motion of a machine, there obtains a relation between the
motion of each one of its elements, and that of every other element, so that the
velocity of every other moving element of the machine may at any time be expressed
by an algebraical function of the velocity of that one element, and the space traversed
by it from a given period of the motion, the constants entering into which function
are determined by the forms, dimensions, and combination of the elements of the
machine*. If any one such element be made to move uniformly, the other elements
will either move uniformly or with a periodical motion, or some of them uniformly,
and others with a periodical motion. In the first case it is evident that the motion of
every element will bear a given constant ratio to that of every other. In the second
case, that it will bear to it a ratio which will become the same at the expiration of
each given period ; it is evident moreover that this given ratio between the velocities
of the moving elements, will obtain constantly or periodically under a variable as well
as a constant motion of the first element of the machine. Suppose the work to be
estimated during a period which is a common multiple of the periods or cycles of the
different moving elements. Let V, represent the velocity of the moving point, or first
element of the machine at the commencement of this cycle or period, which is a com-
mon multiple of all the other periods, and V, that at its termination, and v, and v,
the velocities of any other element at the commencement and termination of the same
cycle or period ; then A.V, = v;, A.V, = v,, where A represents a constant quantity
given in terms of the forms, dimensions, and combination of the intervening ele-
ments of the machine. The same being true of every other element, it follows that

Swol=V2.2wi, Iwvt=V23Iwi?;
LglwEi—ef) =g (V= VH). T

* Professor WiLLis has determined the form of this function in respect to each of the principal elements of
complex machinery, in his work recently published, entitled * The Principles of Mechanism.’
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Substituting this value in the preceding equation (1.),
SU,=3U,+ 2u+§§(vlz —VAHZwa . . . .. (2)

This equation expressing a relation between the work 3 U, done upon the moving
point of a machine, and that 2 U, yielded at its working points, it is proposed to call
the Modulus of the machine.

If the velocity V; of the moving point be constant, or if it return to the same value
at the expiration of each period, then

Vi=V,and 3 U, =30, + 3w

This may be called the modulus of uniform or periodical, and the other that of
variable motion. The modulus is thus in respect to any machine, the particular form
applicable to that machine of the above equation, and being dependent for its amount
upon the amount of work = » expended upon the friction, and other prejudicial re-
sistances opposed to the motion of the various elements of the machine, it measures
in respect to each such machine, the loss of the work due to these causes, and
therefore constitutes a true standard for comparing the expenditure of moving power
necessary to the production of the same effects by different machines, and (ceteris pa-
ribus) a true measure of the working qualities of such machines. It has been the
principal object of the researches which the author proposes to submit to the Society,
in this and a subsequent paper, to develope these properties of the modulus under a
general form, to determine the particular moduli of some of those elements which
enter most commonly into the composition of machinery, and to deduce the moduli of
various compound machines, by a general method, from the moduli of their component
elements.

4. Solving equation (2.) in respect to V,, we obtain
-30,—-3% u} )

2w A2

It is evident from this equation, that any inequality between the work = U, done
upon the moving point, and that 2 U, 4+ 3 « yielded upon the work done, and upon
the prejudicial resistances, produces a greater or less variation in the velocity of the
machine, according as the quantity represented by 2 w A% is greater or less.

It is proposed to call this quantity, which has a different value under every different
mechanical combination, and which is here, it is believed, first introduced into the dis-
cussion of the theory of machines, the coefficient of equable motion. Being determined
in respect to any machine, it measures (every other consideration being excepted) the
greater or less steadiness of the motion, which is maintained by that machine under
a given variation of the power which impels it.

5. General form of the Modulus of a Machine.
Let P, represent the pressure upon the moving point of a machine, and P, P;.... P

n
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the pressures upon its different working points, and let that relation which obtains at
any period of the motion between the moving pressure P, and the working pressures
P,, P, &c., when in the state bordering upon motion, and subject to the various
prejudicial resistances under which the machine works, be represented by

P=F@P,P,&e). . . . . . . . . .. (38)

Let s;, sy, 53, &c. represent the spaces described in the same exceedingly small time
by the points of application of Py, P,, &c., if these points move in the directions in
which those pressures severally act, and if not let them represent the projections of
these spaces on the directions of the pressures. Then are these spaces, s,, s;, &c., evi-
dently related to the space s, by equations of the form

o Sg == S1, 3 S3= 81, oy 8 = §y, &e. &e.,
where w,, s, g, &c. are certain constant quantities determined by the forms and di-
mensions of the moving elements of the machine and their combination, or certain
functions of these and of the space s; which the moving point has described from
the commencement of any given period of its motion. Let now u, represent the
work of the pressure P, through the space s,, u, that of P, through s,, &c.

wuy=Pys, uy, =P,y u; = Pys;, &e.

. Y _ MUy _ MgUg
.Pl—sl, P2— Sl 2 P3— 33,&0.
u °
R T 2 N O

Which equation,—expressing a relation between the work %, at the driving point,
through a small increment s, of the space S, described by that point, and the work
uy, U, &c. yielded during the same period at the several working points—is the
modulus of the machine in respect to an exceeding small motion of its elements.

If the pressures P, P,, &c. remain constant during any given period of the opera-
tion of the machine, and act continually in the same directions, it is evident that the
above reasoning obtains whatever may be spaces; through which the work #; is done ;
so that the exceeding small quantities u,, u,, &c. s, may in this case be replaced by the
finite quantities U,, U,, &c. S;*; S, representing any finite space through which the
work Uj is done at the driving point, whilst the work U,, U,, &c. is yielded at the
working points of the machine.

If the pressures Py, P,, P, &c. be variable during any given period of the continuous
operation of the machine, as it respects their several amounts, or their directions, or
as to both these elements, then are they (in every case presented in the operation of
machinery, simply and without the interposition of any voluntary agent) functions of
the spaces S}, S,, S;, &ec. traversed by their points of application, and therefore of the

* If the direction of the pressure P, be other than that in which its point of application is made to move, S,
must be taken to represent the projection of the space described by that point on the direction of the force.
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space S, traversed by the point of application of the moving power; so that, repre-

senting P, by its value %, we have by equation 3,

“=TF (P, P,, &e.),

$1

where the second member is a function of S;,. Now if the direction in which the
point of application of P, is made to move do not coincide with the direction in which
that force acts, being inclined to it in any position at an angle ¢, then, since s, repre-
sents in this case the projection of the increment A S, of the space described by the
point of application of P, on the direction of that force, we have s; = A S, cos 4;
observing, therefore, that «, is the increment of U}, and representing it by A U, we
have

="y —— =F (P, P, . &c.),

and passing to the limit

dUu
'd—s‘;l'=COSg.F(P2,P3, &C.).

U= [cos0. F(P,Py&e) dS, . . . . . . . (5)

where ¢ and F (P,, P,, &c.) are functions of §;.

The work U, done through a given space 8, at the driving point under the pres-
sures P,, P, &c., at the working points of the machine, is determined by this equa-
tion in terms of S,. Now the pressure P, is given in terms of the work U, done by
it, and the distance S, through which it is done; and S, is given in terms of S;; so
that P, is given in terms of U, and §;. In like manner P; is given in terms of U,
and S, ; and so of the rest. If, therefore, we substitute for P,, P;, &c. in the above
equation their values thus determined, we shall obtain a relation between U}, U,, U,
&c. and S;, which is the modulus required.

6. There exists in every case a relation between the quantities w,, p;, &c., which
will be found useful in determining the moduli of a large class of machines. Let
P,® be taken to represent that value of P; which would be necessary to give motion
to the machine if there were no prejudicial resistances opposed to the motion of its
parts ; and let FO (P,, P;, &c.) represent the corresponding value of F (P, P,, &c.),

. P® = FO (P, P, &c.).
Also by the principle of virtual velocities, since P,?, P,, P;, &c. are pressures in equi-

librium, we have
PO. s =Py.s,+Ps.854+....3

substituting for s,, s3, &c., their values {?, :7‘, &c., and dividing by s,,
2 8

P P
St St ke =FO Py Py&e) . . . . . . . ... (6)

MDCCCXLI. 2Q
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In that large class of machines which present but one moving and one working point,
the relation between P, and P, (equation 3.) will be found to present itself under the
form

P=aP,+E; . . . . . . . . . ... (7)
where a is a function of the prejudicial resistances assuming a finite value, which may
be represented by a®, when these resistances vanish; and where Eis a function of
P, and also of the prejudicial resistances, which vanishes with them. In this case;

therefore, ‘
P, @ = F® (P,, P;, &c.) = a@ P,;
and by equation 6, -

P, 1
—2 _ 00 . —_——
=aPP, . ipy= PO

also .
P,=F (P, P, &c.) = a P, + E;
therefore, by equation 4,
%

U Pt .
sl—'a 8 +E;

I . 1
substituting for w, its value —gp

;‘(’(—,;.’gf+E,'..............(8.)
by which equation the modulus of the machine, in respect to an exceedingly small
motion of its parts, is determined in terms of the relation expressed by equation 7,
between the moving and working pressures P, and P, in the state bordering upon
motion. Assuming the moving pressure to be applied in the direction of the motion
of the moving point, observing that s;, u;, u, are the increments of S,, U,, U,, and
passing to the limit, we have by equation (8.),

dU, a 4T,
' 3§,= @ gs, TE

%
%

2Ui=. U4+ [EdS, . . . . . . ... 9)

which is the modulus of the machine. If the working pressure be constant, both as
to its amount and its direction, E is constant, and the modulus becomes

U==.U,+E.S. . . . .. ... (0)

7. It remains now to consider on what general principles the relation expressed by
equation 3. between the moving and the working pressures in their state bordering
upon motion, may in each particular case be determined. Amongst these pressures
there is, in every machine, included the resistance of one or more surfaces. Did no
friction result from the pressure of the surfaces of bodies upon one another, their mu-
tual resistance would be exerted in the direction of the common normal to their point
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of contact. We know, however, by daily experience, that the resistance of no two
surfaces is limited to this single direction. Friction presents itself wherever the re-
sistance of the surfaces of solid bodies is exerted, and is, in fact, but the resolved part
of that resistance in a tangent plane to the surfaces at their point of contact. And
from the laws which have been proved by experiment to obtain approximately in
respect to it, it follows that within the surface of a certain cone, called the cone
of resistance, whose apex is at the point of contact of the surfaces, whose axis coin-
cides with the normal, and whose angle is twice that which has for its tangent the
coefficient of friction, every direction that can be taken is one in which the mutual
resistances of the surfaces of contact is exerted as perfectly as in the normal direction ;
in fact, that any pressure (less than that which produces abrasion) being applied to
the surface of an immoveable solid body by the intervention of another body move-
able upon it, is sustained by the resistance of the surfaces of contact, whatever be
its direction, provided only the angle which that direction makes with the perpen-
dicular to the surfaces of contact do not exceed a certain angle, called the limiting
angle of resistance of those surfaces. This is true, however great the pressure may
be, within the limits of abrasion. Also, if the inclination of the pressure to the per-
pendicular exceed the limiting angle of resistance, then this pressure will not be sus-
tained by the resistance of the surfaces of contact; and this is true however small
the pressure may be.

Let P Q represent the direction in which the surfaces of two
bodies are pressed together at Q; and let Q A be a perpendicular, .
or normal to the surfaces of contact at that point; then will the &
pressure P Q be sustained by the resistance of the surfaces, how- K
ever great it may be, provided its direction lie within a certain given
angle, A Q B, called the limiting angle of resistance; and it will not be sustained
however small it may be, provided its direction lie without that angle. For let this
pressure be represented in magnitude by P Q, and let it be resolved into two others,
A Q and R Q, of which A Q is that by which it presses the surfaces together perpen-
dicularly, and R Q that by which it tends to cause them to slide upon one another ;
if therefore the friction F produced by the first of these pressures exceed the second
pressure R Q, then the one body will not be made to slip upon the other by this
pressure P Q, however great it may be; but if the friction F, produced by the per-
pendicular pressure A Q, be less than the pressure R Q, then the one body will be
made to slip upon the other, however small P Q may be. Let the pressure in the
direction of P Q be represented by P, and the angle A Q P by 4, the perpendicular
pressure in A Q is then represented by P cos ¢, and therefore the friction of the sur-
faces of contact by f'P cos 4, f representing the coefficient of friction. Moreover, the
resolved pressure in the direction R Q is represented by P sin 4. The pressure P will,
therefore, be sustained by the friction of the surfaces of contact, or not, according as

P sin 4 is less or greater than /' P cos 4;
2q2




294 PROFESSOR MOSELEY ON THE THEORY OF MACHINES.

or dividing both sides of this inequality by P cos 4, according as
tan 4 is less or greater than f.

Let now the angle A Q B equal that angle whose tangent is f, and let it be repre-
sented by ¢, so that tan ¢ = f.

Substituting this value of £ in the last inequality, it appears that the pressure P will
be sustained by the friction of the surfaces of contact, or not, according as

tan ¢ is less or greater than tan ¢,
that is, according as
¢ is less or greater than o,

or according as A Q P is less or greater than A Q B.

If the angle A Q B be conceived to revolve about the axis A Q, so
that B Q may generate the surface of a cone B Q C, then does this
cone evidently possess the properties assigned to the cone of resistance
in the commencement of this section.

If the direction of the pressure P coincide with the surface of the
cone, it will be sustained by the friction of the surfaces of contact, but the bddy to
which it is applied will be upon the point of slipping on the other. The state of the
equilibrium is then said to be that bordering upon motion.

If the pressure P admit of being applied only in a given plane, there are but two
such states corresponding to those directions of P which coincide with the two inter-
sections of the plane with the surface of the cone; these are the superior and the
inferior states bordering upon motion.

Thus, then, it follows, conversely, that “when any pressure applied to a body
moveable upon another which is fixed, is sustained by the resistance of the surfaces
of contact of the bodies, and is in either state of the equilibrium bordering upon mo-
tion, then is the direction of that pressure, and therefore of the opposite resistance of
the surface inclined to the normal at a given angle, that called the limiting angle
of resistance*.”

8. If any number of pressures P, P, Py, &c. applied in the same plane to a body
moveable about a cylindrical axis, be in the state bordering upon motion, then is the
direction of the resistance of the axis inclined to its radius, at the point where it
intersects its circumference, at an angle equal to the limiting angle of resistance.
For let R represent the resultant of P,, P,, &c.; then, since these
forces are supposed to be upon the point of causing the axis of the body
to turn upon its bearings, their resultant would, if made to replace
them, be also upon the point of causing the axis to turn on its bearings.
Hence it follows that the direction of this resultant R cannot be through
the centre C of the axis; for if it were, then the axis would be pressed by it in the

* The principle here stated was first published in the Cambridge Philosophicai Transactions, vol. 5, by the
author of this paper.
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direction of a radius, that is, perpendicularly upon its bearings, and could not be made
to turn upon them by that pressure, or to be upon the point of turning upon them.
The direction of R must then be on one side of C, so as to press the axis upon its
bearings in a direction R L, inclined to the perpendicular C L (at the point L where
it intersects the circumference of the axis,) at a certain angle, R L. C. Moreover, it
is evident (by the last article) that since this force R pressing the axis upon its bear-
ings at L is upon the point of causing it to slip upon them, this inclination R L C of
R to the perpendicular C L is equal to the limiting angle of resistance of the axis and
its bearings*. Now the resistance of the axis is evidently equal and opposite to the
resultant R of all the forces P,, P,, &c. impressed upon the body. The resistance
acts, therefore, in the direction L R, and is inclined to C L at an angle equal to the
limiting angle of resistance.

If the radius CL of the axis be represented by ¢, and the limiting angle of resist-
ance C L R by ¢, then is the perpendicular C m upon the resistance R from the centre
C of the axis represented by ¢ sin ¢, so that the moment of R about that point is re-
presented by R sin ¢. '

9. The conditions of the equilibrium of any number of pressures in the same plane,
applied to a body moveable about a cylindrical axis in the state bordering upon
motion.

Let P;, P,, P;, &c. represent these pressures, and R their resultant. Also let a;, a,,
a, vepresent the perpendiculars let fall upon them severally from the centre of the
axis, those perpendiculars being taken with the positive signs whose corresponding
pressures tend to turn the system in the same direction as the pressure P;, and those
negatively which tend to turn it in the opposite direction. Also let A represent the
perpendicular distance of the direction of the resultant R from the centre of the axis,
then, since R is equal and opposite to the resistance of the axis, and that this resist-
ance and the pressures P, P,, P;, &c. are pressures in equilibrium, we have by the
principle of the equality of moments,

Pya, + P,a, + P;a; + &e. =2 R.
Representing, therefore, the inclinations of the directions of the pressures Py, P,, Py,
&c. to one another by 4 5, 43, b5Y, &c. &e., and substituting for the value of R,

* The side of C on which R L falls, is manifestly determined by the direction towards which the motion is
about to take place. In this case it is supposed about to take place towards the left. If it had been to the
right, the direction of R would have been on the opposite side of C.

+ The inclination ¢, , of the directions of any two pressures in the above expression, is taken Q
on the supposition that both the pressures act from, or both fowards the point in which they in-
tersect, and not one towards and the other from that point; so that in the case represented in
the accompanying figure the inclination 4, , of the pressures P, and P, represented by the arrows,
is not the angle P, I P,, but the angle P, I Q, since I Q and I P, are directions of these pres-
sures, both tending from their point of intersection ; whilst the directions of P, I and 1P, are
one of them fowards that point, and the other from it.

1 Poisson, Mécanique, Art. 33.
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We

[PIZ +P24+P24..... ]

‘ _ + 2P, Pycoss,+ 2P Pycos s+ .. ...

Proy + P2a2+P3a3+...._7\1 +2P,P;co845+4 2P, Pycoss, .. ...
+ &ec. &e.

P24 2P, (Pycossy+ Pycossyz+..... )]

_PQaQ+P3a3+...+_A_ + P24+ P24+ P24 . ... |
O 4 +2P,P,4+2P,P, 4 .....

+ &c. &c. J

If the value of P, involved in this equation be expanded by LaGraNGE’s theorem *, in
a series ascending by powers of A, and terms involving powers above the first be
omitted, we shall obtain the following value of that quantity :—

W=

P, =

M1 ‘ %
4 (Pyay+ Pyas + Pyay+ ... )?
2
~ % (Pyay+ Pyag+ Pyra,+ ... BE
p, = _Poay + ll)lsla3+..._|_ (_aﬁl_)< (Pycos sy y+ Pycos iy s+ Py cos iy +..... )3
+P24P2AP24.......
+ 2 P, Py cos sy + 2P, Py cos sy,
| T 2P;Picosi ... ]
or reducing, .
(P2 (a2 — 2 a, a, cos ¢, 5 + a,?) 1%
+ P? (2> — 2 @y a3 cos 43 + a3?)
p :____P,A,aQ+Paas+..._‘__)L4 -+ &e. &c. y
! a, 0| +2P,Pylayu;—a, (@, €084y 5+ a,c081 3+a;c081, )1
+2P, P {a,a, — a;(a;cos s, +a,co8i +a,co84,,)} |
| + &e. &e. ]

Now a2 — 2 @, a, cos 4, , + a,? represents the square of the line joining the feet of the
perpendiculars @, and a, let fall from the centre of the axis upon P; and P, ; similarly
a,2 — 2 a, a3 cos i 5 + a;® represents the square of the line joining the feet of the per-
pendicular let fall upon P, and P;, and so of the rest. Let these lines be represented
by Ly, Ly, L4, &ec., and let the different values of the function

{ay a5 — a; (@; COS 43 -+ @y COS 4y 5+ @3 CO84;5)}
be represented by M,;, M,,, M;,, &c.,
"ol a] 0’12 +2 P2P3M2l3+2 P2P4 M2'4+... ) ) .v

10. The conditions of the equilibrium of three pressures P,, P,, P, in the same

* This expansion may be effected by squaring both sides of the equation, solving the quadratic in respect to
P,, neglecting powers of A above the first, and reducing ; this method is however exceedingly laborious.
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plane applied to a body moveable about a fixed axis, the direction of one of them P,
passing through the centre of the axis, and the system being in the state bordering
uapon motion by the preponderance of P *.

Let ¢, 5 4 5 455 be taken, as in the preceding section, to represent the inclinations of the
directions of the pressures P;, P,, P; to one another, and a,, @, the perpendiculars let
fall from the centre of the axis upon P,, P,; and A the perpendicular let fall from the
same point upon the resultant R of P;, P,, P,. Then since R is equal and opposite to
the resistance of the axis (section 8.), and that P, acts through the centre of the axis,
and P, and P, act to turn the system in opposite directions about that centre,

P,a,—P,a,=rR.
Substituting for R its value-,
Pia,—Pya, =0 {P2+ P2+ P2+ 2P, Pycoss,+ 2P Pycossy + 2P, Pycosiyylis
squaring both sides of this equation and transposing,
P2(a?—2%) — 2P, {Pya,a,+ 22 (P,cos 4, + Pscos i 4)}
= — P)2a,2 422 (P2 4 P2 4 2P, P; cos 5}
solving this quadratic in respect to P, and omlttmg terms which involve powers of
A above the first,

Poa?=Pya,a,+ 1 {P?(a? + 2 a, a,cos i), + a,%) + P2 a2
+ 2 P, Pya, (a,co84 5 4 a; cos 455)};

or representing the line which joins the feet of the perpendiculars ¢, and a, by L, and
the function a, (a, cos 4,5 + a; cos 1,3) by M,

; A 1
P, =P, (gf-) + o PRLE 4+ PRa2 + 2P P MY . L L (12)
If P, be so small as compared with P,, that in the expansion of the irrational quan-

tity, terms involving powers of above the first may be neglected, the above equa-

tion will become by reduction,

P, = ( { }P+N“ s

If in the expressions represented by L,, and M,; (section 9.) we make a; = 0,
give to a, the negative sign (since the forces P, and P, tend to turn the system in
opposite directions about the axis), and observe that, since P, receives an opposite
direction, cos 1,; becomes negative}, these expressions will become identical with
those represented by L and M in the preceding equation (12.), and that equation will

* This problem is here investigated by an independent method as a verification of the theorem established in
the preceding article, and as an application of it to a case of frequent occurrence in machinery.
1+ Poissox, Mécanique, Art. 33. i See note, p. 295.
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have become identical with equation (11.), and will have supplied a verification of
that equation.

If the body to which the pressures Py, Pz, P, are applied have its centre of gravity
in the centre of the axis about which it revolves, as is commonly the case in
machines, then may its weight be supposed to act through the centre of its axis, and
to be represented by P; in the preceding formula, so that, by that formula there is
represented the relation between any two pressures P; and P, applied to such a body
moveable about a fixed axis, the friction of that axis and the weight of the body being
taken into account.

11. The modulus of a simple machine to which are applied one moving and one
working pressure, which is moveable about a fixed axis, and has its centre of gravity
in the centre of that axis, the weight of the machine being taken into account.

Let P, and P, represent the moving and working pressures on the machine, and
P, its weight, then is the relation between these pressures in the state bordering upon
motion determined by equation (12.), in which A represents the perpendicular upon
the direction of the resistance of the axis, and is therefore equal (section 8.) to ¢ sin ¢,
if ¢ represents the radius of the axis, and ¢ the limiting angle of resistance. By the
substitution of this value of A, equation (12.) becomes

p,=p, (% ) + 93‘“"’{P22L2+ 2P, P, M + P32a12}% L. (4)
Now it is evident that this equation is of the form assumed in equation 7, section 6,
the term involving the irrational quantity being represented by E (in equation 7.),

and the coefficient of PZ, by a. The value of g—g— is evidently in this case independ-
1

ent of the prejudicial resistances, so that a, = 9?, and — = 1. Assuming, there-
%

fore, the direction of the moving pressure P, to be the same with that in which its
point of application is made to move, representing by 0 the angle through which that

. . . ds
point has at any time revolved, and observing that =" = ,, we have by equation 9,

psing £ 3
Ul::U2+——t;l——~‘/; (PRLZ +2P,P,M +Pa2yids, . . . . (15)

which is the modulus of the machine, and in which the term 3, involving the integral,
represents the work lost by friction whilst the angle ¢ is described about the axis.

If the directions of the pressures P, and P, remain the same during the revolution
of the body, and the working pressure P, be constant, then is the irrational quantity
in the above expression constant, and the term involving the integral becomes by
integration,

P_SEI__‘P{PzL2+9p P,M + P;2q,2 } Borpsm‘ﬁ{Png‘l-?P P3M+P2al} .S,
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(observing that 0 a, = S,), or bringing S, under the radical sign,

psin ¢
@y &y

{Pg S212+2P,S,2P, M 4 P28, alz}%,
or

1

{U22 L2 4+ 2U,S,P,M + P2S,2 a2 } Y

psin

@,

so that in this case of a constant direction of the moving pressure, and a constant
amount and direction of the working pressure, the modulus becomes,

1

U1=U2+P;:r;:{U22L2+2UZSZP3M+P32822a12}§; ... (16)

and the work lost by friction whilst the space S, is described by the working point,
is represented by the term involving the irrational quantity in this equation.

12. A machine working about an axis of given dimensions under two pressures,
P, and P,, the direction and amount of one of which P, are given, it is required to
determine that constant direction in which the other pressure P, must be applied, so
that the machine may be worked with the greatest economy of power.

It has been shown in the last section that the work lost by friction is represented,
in the case here supposéed, by the formula

psin<b U22L2 +2 U282P3h4+P32822a12}f e e e e e e e (}7.)

a,dy

The machine is evidently worked then with the greatest economy of power to yield
a given amount of work, U,, when this function is @ minimum. Saubstituting for L2
its value
- @® + 2 a, a,co84, + a?
and for M its value :

a; {a,cos 4 5 4+ a; cos 43} (section 10.),
it becomes

f—(zljg{Uf (2242 a,a,c084 o+ a,%) + 2 Uy Py S, 0 (ay€084 34-a, cosiy 5) 4+ Py2S,? alz}i (18.)
Now let us suppose that the perpendicular distance a, from the centre of the axis
at which the work is done, and the inclination 4, of its direction to the vertical, are
both given, as also the space S, through which it is done, so that the work is given
in every respect ; let also the perpendicular distance @, at which the poweris applied,
be given; it is required to determine that inclination 4, of the power to the work
which will under these circumstances give to the above function its minimum value,
and which is, therefore, consistent with the most econowmical working of the machine.
Collecting all the terms in the function (18.) which contain (on the above suppo-
sitions) only constant quantities, and representing their sum
U (a2 + a?) + 2 P48, a2 (Uycossy; + Py S,)
by C?, it becomes

psin ¢
@, Gy

2 a; a, Uy (Uy cos 45+ Py S, cos 4 5) + C? } 5

‘'MDCCCXLI, 2R
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Now C? being essentially positive, this quantity is a minimum when
2 ay a, Uy (Uyc0s 4y, + Py Syc084 )
is a minimum ; or, observing that U, = P, S,, and dividing by the constant factor
2a,a,U,S,; when
P,cos s, + Pscoss 5 is a minimum.

From the centre of the axis C let lines C p, C p, be drawn parallel
to the directions of the pressures Py, P, respectively; and whilst C p,
and C P, retain their positions, let the angle p; C P; or 4 ; be con-
ceived to increase until P; attains a position in which the condition
P, cos ¢, + P; cos 4 ; = a minimum is satisfied. Now

PiCPy=p,Cpy —p, C Py 014 3= 1415 — iy3;

substituting which value of ¢ 5, this condition becomes

P, cos 4,5 + P;cos (4 5 — 4,3) = a minimum,

or
P, cos s, -+ Py cos s ,co84y5 + Pysing ,8ins, ; = a minimum,
or
(P, + P coss,3) cos 4, 4+ P3sin 45 8in 4, = a minimum.
Pysini,g
Let now B, 4 P,c0s 15, — tan y,
so.that

P,y sin,, = (P, 4 P;cos4y3) tan y
oo (P4 Py cosiyg) cosiy, 4 (Py 4 Py cosiy;) tan y sin 4, = a minimum,
or dividing by the constant quantity (P, 4 P; cos +,3), and multiplying by cos ,
COS 41, €OS ¥ -+ 8in 4, 8in y = cos (4, — ¥) = a minimum.

Ly —y =

P.sin
. — -1 823
<o ==+ tan {PQ+P3cos;23}" e e e e e (19)

To satisfy the conditions of a minimum, the angle p, C p, must therefore be in-
creased until it exceeds 180° by that angle ¥ whose tangent is represented by
Py siny,g )
P, + Pgcosiyg
To determine the actual direction of P, produce then p, C to ¢, make the angleq C
equal to y; and draw C m perpendicular to C r, and equal to the given perpendicular
distance @, of the direction of P, from the centre of the axis. If m P, be then drawn
through the point m parallel to C r, it will be in the required direction of P, ; so that
being applied in this direction, the moving pressure P, will work the machine with a
greater economy of power than when applied in any other direction round the axis.
It is evident that since the value of the angle ,, or p, Cp,, which satisfies the con-
dition of the greatest economy of power, or of the least resistance, is essentially greater
than two right angles, P, and P, must, to satisfy that condition, both be applied on
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the same side of the axis. It is then a condition necessary to the most economical
working of any machine (whatever may be its weight) which is moveable about a
cylindrical axis under two given pressures, that the moving pressure should be ap-
plied on that side of the axis of the machine on which the resistance is overcome, or
the work done. It is a further condition of the greatest economy of power in such a
machine, that the direction in which the moving pressure is applied should be in-
clined to the vertical at an angle 4, ; determined by the formula

P,sing
11.3=‘z'—12.3+tan—1{}—,9—_p3—1—)§§———':,2'3}. Coe e e e (200

When 44 = 0, or when the work is done in a vertical direction, 4 ; = #, whence it
follows that the moving power also must in this case be applied in a vertical direc-

tion, and on the same side of the axis as the work. When,; = ;L, or when the work

is done horizontally, tan y = ]—L)—f";
2

P
e ‘1.2 =7 + tan_l (ﬁ)'

2
The moving power must therefore in this case be applied on the same side of the
axis as the work, and at an inclination to the horizon whose tangent equals the frac-
tion obtained by dividing the weight of the machine by the working pressure.

\s . 37 .
Since the angle 4, is greater than 7 and less than -, therefore cos 4, is nega-

tive ; and, for a like reason, cos 4 4 is also in certain cases negative. Whence it is ap-
parent that the function (18.) admits of a minimum value under certain conditions,
not only in respect to the inclination of the moving pressure, but in respect to the
distance a, of its direction from the centre of the axis. If we suppose the space S;
through which the power acts whilst the given amount of work U, is done, to be given,
and substitute in that function for the product S, @, its value S; a,, and then assume
the differential coefficient of the function in respect to @, to vanish, we shall obtain
by reduction,

U2+ 2U,P;8,cos 4,5 + PS? S,Q.

U2cosiy, + Uy Py S cosigg

4= —ay- (21.)

If we proceed in like manner, assuming the space S, instead of S, to be constant, and

substituting in the function (18.) for S, a, its value S, a;, we shall obtain by reduction,

Pya,
—_ 2. .
P,cosi o+ Pycosigg

a = (22.)

It is easily seen that, if, when the values of 4, and 43 determined by equations
19 and 20. are substituted in these equations, the resulting values of a; are positive,
they correspond, in the two cases, to minimum values of the function (18.), and de-
termine completely the conditions of the greatest economy of power in the machine,
in respect to the direction of the moving pressure applied to it.

2R2
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13. The Modulus of the Pulley.

Let P, and P, be taken to represent the moving and working (or the preponderating
and yielding) tensions upon the two parts of the cord passing over a pulley; let
W represent its weight, a its radius measuring to the centre of the cord, ¢ the radius
of its axis, and ¢ the limiting angle of resistance between the axis and its bearings.
Then if the cord were without rigidity, we should have by equation (13.), observing
that @, = a, = @, and substituting W for P,, and ¢ sin ¢ for 2,

{ 2+L2 W sin ¢.

But by the experiments of COULOMB (as reduced by M. PoNceLET)*, it appears that
the effect of the rigidity of the cord is the same as though it increased the tension

E D . . .
P, so as to become P, (1 -+ —a—) + -,> where E and D are certain constants given in

terms of the diameter of the rope. Taking into account the effect of this rigidity,
the relation between P; and P, becomes therefore

P_-{l+ sm@}{P (1+E>+ }—I—L W sin ¢,

whence by reduction we have
E Lp . D L MW\ .
Pl:(l+7{){l+7sm@}P2+Z{l+(&5+LDa)5sm¢}’ . (23.)

where L represents the chord of the arc embraced by the string, and M the quantity
a? (oS 4, 5 + €08 4y3), 43 and 45 being the inclinations of the two parts of the string to
the vertical (section 10.).

Let the accompanying figure be taken to represent the pulley with the
cord passing over it, and E P; the direction of the weight of the pulley,
supposed to act through the centre of its axis, then are the angles s ; and ®
1,5 represented by P, E P;, and P, F Py, or their supplements, according as
the pressures P, and P, respectively act downwards, as shown in the figure, |
or upwards+; so that if both these pressures act upwards, then the ¥ iI
cosines of both angles become negative, and the value of M is negative;
whilst if ore only acts upwards, then one term only of the value of M
assumes a negative value. Let the inclination A I B of the two parts of
the string be represented by 2+, then L = A B = 2 a cos «. Substituting
this value for L, and also its value a* (cos s, 5 + cos 43) for M, and omit-
ting terms which involve products of the exceedingly small quantities

D E [
ey and -_- sin ¢, we have

W p (cos iy g+ oS ,9) sm¢
2 a cos

Pl_{l + — +—cos:smgb}P + -+

* See Poncerer, Mécanique Industrielle, 128. 1 See Note, Section 9.



PROFESSOR MOSELEY ON THE THEORY OF MACHINES. 303

Whence* we obtain for the modulus of the pulley,
U, = { L4+ 2 422 o5 sin ¢} U, + {—]3 4 Tp(cosns + 0081y SM} S. . (24)

If both the strings be inclined at equal angles to the vertical, on opposite sides of
it, or if 4 53 = 1,5, =4, SO that cos 4, 5 + €0s 13 = 2 cos 4, the modulus becomes

={1 +%+%Bcos:sin@}U2+{%+—W&Bsin¢}sl.

If one part of the cord passing over a pulley have a horizontal, and the
other a vertical direction, as, for instance, when it passes into the shaf? of a
mine over the sheaf or wheel which overhangs its mouth, then one of the angles

i 35495 (equation24.) becomes g, and the other 0 or #, according as the tension

of the vertical part of the cord is upwards or downwards, so that cos 4, ; + cos sy, E
= 4 1, the sign + being taken according as the tension on the vertical branch of

the cord is upwards or downwards: moreover in this case + = %:, and cos s = 71_.2.,
therefore by equation (24.),
U1={1+ +———sm<p}U—|— {D-I—- smqD}S

If the two parts of the cord passing over the pulley be parallel, and
their common inclination to the vertical be represented by 4, so that +; 3 =14,
= 4; then, since in this case L = 2 a, we have by equation (23.), neglecting

terms of more than one dimension in —and —‘0—

Ul={1+%+¥sinqb}U+ {1-|- +W]°)°S‘ sn@} .. (27)

in which equation, s is to be taken greater or less than 1, and therefore the sign of
q s g 2 8

cos s is to be taken positively or negatively, according as the tensions on the cords
act downwards or upwards. If the tensions are vertical,s = 0 or 7, according as they
act upwards or downwards, so that cos s = 4= 1. If the parallel tensions are hori-

zontal, then + = %, and the terms involving cos / in the above equations vanish.
If both parts of the cord passing over a pulley be in the same horizontal straight
line, so that the pulley sustains no pressure resulting from the tension of the cord, but

only bears its weight, then 1= %, and the term involving cos / in equation (25.) vanishes.

It is, however, to be observed, that the weight bearing upon the axis of

the pulley, is the weight of the pulley increased by the weight of the cord

which it is made to support; so that if the length of cord supported

by the pulley be represented by s, and the weight of each unit of length by w, then is
* See Section 6, Equation 10.
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the weight sustained by the axis of each pulley represented by W 4 w s. Substitu-
ting this value for W and assuming cos s = 0 in equation (25.), we have for the modulus
of the pulley in this case,

U1=(1+%—)U2+%{D+(W+(bs)gsin¢}sl.. . @8)

In which equation it is supposed that although the direction of the rope on either side
of each pulley is so nearly horizontal that cos s may be considered evanescent, yet the
rope does so far bend itself over each pulley, as that its surface may adapt itself to the
curved surface of the pulley, and thereby produce the whole of that resistance which
is due to the rigidity of the cord.

Let it now be supposed that there is a system of n equal pulleys, or sheaves of
the same dimensions, placed at equal distances in the same horizontal straight line,
and sustaining each the same length s of rope.

Let U, represent the work done upon the cord, through the space S, by the moving
power, or before it has passed over the first pulley of the series; U, the work done
upon it after it has passed over the first pulley; U, after it has passed over the second,
&ec.; and U, after it has passed over the nth pulley or sheaf; then

U, = (1.+‘5‘> Uz+%{D+(W+,ws)gsin¢}Sl;
U,=(1+%3) U3-|—%{D+(W+ps)gsin¢}81,&c.&c.;

Uy=(143) Ui+ g {D+ (WHpgesing} s,

Eliminating the n — 1 quantities U, U; ... U, ; between these n equations, and

. . . E D .
neglecting terms involving powers of —> — % sin ¢ above the first, we have

U1=(l+7—L—EE)UH—|—%{D+(W+y,s)gsingo}81. C )

Let us now suppose that the rope, after passing horizontally over z equal pulleys,
the radius of each of which is represented by a, and its weight by W, as in the pre-
ceding case, assumes at length a vertical direction, passing over a pulley or sheaf of
different dimensions, whose radius is represented by @, that of its axis by ¢, and
its weight by W, ; as for instance, when the rope of a mine descends into the shaft
after having traversed the space between it and the engine, supported upon pulleys.

Let U, represent the work done upon the rope through the space S, after it has
assumed the vertical direction or passed into the shaft, and let U, represent, as before,
the work done upon it after it has passed over the » horizontal pulleys, and before it
passes over that which overhangs the shaft. Then by equation (26.),

, E Ve . 1 W .
Un={1 +71+P1“1 sxn¢}U2+Z{D+7l5351n¢}Sl.
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Eliminating the value of U, between this equation and equation (29.), and neglecting

dimensions above the first in %«, &c., we have
— L,n) nv2 1yr
U, = {1 +E(Z+;) + -—‘;l—smgv}Ug+{D(al +2

w W _
_|_ {ali/Pgl + (" :w)p }S]l’l ¢}SD e e e e e e e (30)

where w represents the whole weight » s of the rope supported horizontally by the
pulleys. In this, as in the preceding case, it is assumed that although the rope is so
nearly in the same straight line on either side of each pulley that cos s may be con-
sidered evanescent, yet it does so far bend as to adapt itself to the circumference of
each, and thereby produce the whole of that resistance which is due to its rigidity.

HeNrY MoOSELEY.

King’s College,
June 9, 1841.



